ଲେଖକ: ଆଇଫ୍ଲୋପାୱାର - Προμηθευτής φορητών σταθμών παραγωγής ενέργειας
1 คำนำ แบตเตอรี่ตะกั่วกรดปิดผนึกควบคุมวาล์ว (VRLA) เนื่องจากมีขนาดเล็ก ป้องกันการระเบิด แรงดันไฟฟ้าคงที่ ไม่มีมลพิษ น้ำหนักเบา ประสิทธิภาพการคายประจุสูง บำรุงรักษาน้อย ราคาต่ำ ฯลฯ ได้รับความนิยมในอุตสาหกรรมต่างๆ ใช้กันอย่างแพร่หลายในระบบไปรษณีย์ ไฟฟ้า การขนส่ง อวกาศ ไฟฉุกเฉิน การสื่อสาร ฯลฯ แบตเตอรี่ VRLA กลายเป็นหนึ่งในส่วนประกอบสำคัญของระบบ และการทำงานที่ปลอดภัยและเชื่อถือได้นั้นเกี่ยวข้องโดยตรงกับการทำงานที่เชื่อถือได้ของอุปกรณ์ทั้งหมด
อย่างไรก็ตามในระหว่างการใช้งาน เนื่องจากไม่สามารถคาดการณ์ความจุที่เหลือได้อย่างแม่นยำ จึงทำให้เกิดอุบัติเหตุขึ้น และตลาดหนักก็เป็นโศกนาฏกรรม ดังนั้นจำเป็นต้องสร้างระบบการจัดการแบตเตอรี่ที่ถูกต้องเพื่อคาดการณ์ความจุที่เหลือของแบตเตอรี่ได้อย่างแม่นยำ ซึ่งเป็นงานพื้นฐานและสำคัญที่สุดในระบบการจัดการแบตเตอรี่ [1] [2] ในปัจจุบันมีการใช้กันทั่วไปในประเทศจีนและต่างประเทศเพื่อระบุความจุที่เหลือของแบตเตอรี่
SOC เป็นพารามิเตอร์สำคัญที่สะท้อนถึงความสามารถในการจ่ายพลังงานอย่างยั่งยืนและสุขภาพของแบตเตอรี่โดยตรง เนื่องจากแบตเตอรี่ VRLA มีประเภท การใช้งาน และสภาพแวดล้อมภายนอกที่แตกต่างกัน SOC จึงมีปัจจัยที่มีอิทธิพลมากมาย จึงต้องคาดการณ์ด้วยวิธีการต่างๆ และรุ่นแบตเตอรี่ที่ใช้ก็ไม่เหมือนกัน วิธีสร้างแบบจำลองของแบตเตอรี่ทั่วไปสามารถแบ่งออกได้เป็น 2 ประเภทหลัก: ประเภทหนึ่งคือวิธีสร้างแบบจำลองทางกายภาพ อีกประเภทหนึ่งคือวิธีสร้างแบบจำลองการระบุและประมาณพารามิเตอร์ของระบบ [3]
วิธีการสร้างแบบจำลองทางกายภาพ 2 ทำนายวิธีทดสอบการคายประจุแบบ SOC2.1 วิธีทดสอบการคายประจุเป็นวิธีประมาณ SOC ที่เชื่อถือได้มากที่สุดที่ได้รับการยอมรับ แบตเตอรี่จะถูกปล่อยประจุอย่างต่อเนื่องจนถึงจุดศูนย์ SOC ที่กำหนดไว้ และผลคูณของกระแสการคายประจุและเวลาคือความจุที่เหลืออยู่
วิธีทดสอบการคายประจุส่วนใหญ่ใช้ในห้องปฏิบัติการเพื่อคำนวณประสิทธิภาพการชาร์จแบตเตอรี่ การตรวจสอบความแม่นยำของการประมาณ SOC หรือการบำรุงรักษาแบตเตอรี่ ซึ่งเหมาะสำหรับแบตเตอรี่ทั้งหมด อย่างไรก็ตาม มีข้อเสียที่เห็นได้ชัด 2 ประการ: (1) ต้องใช้เวลาและมนุษยธรรมมาก; (2) การทำงานของแบตเตอรี่ต้องหยุดชะงัก ไม่สามารถคาดการณ์ออนไลน์ได้แบบเรียลไทม์ สำหรับแบตเตอรี่สำรองแบบคงที่ จำเป็นต้องใช้วิธีนี้ในโอกาสสำคัญ
ในระหว่างช่วงการคายประจุ ระบบจะทำงานโดยไม่มีแบตเตอรี่สำรอง เมื่อไฟฟ้าหลักมีปัญหาหรือไฟหลักขัดข้อง ระบบทั้งหมดจะหยุดทำงาน การสูญเสียที่ไม่มีเหตุบังเอิญ เอกสาร [4] อธิบายถึงวิธีการทดสอบการคายประจุและข้อควรระวัง แต่ต้องใช้การปฏิบัติงานด้วยตนเองจำนวนมาก วรรณกรรม [5] ใช้ระบบตรวจสอบสภาพแวดล้อมพลังงานเพื่อจัดการการทดสอบการคายประจุของชุดแบตเตอรี่ ประหยัดเวลาและประสิทธิภาพ แต่ความแม่นยำต่ำมาก
สามารถระบุประสิทธิภาพของชุดแบตเตอรี่ได้เท่านั้น โดยไม่สามารถประมาณความจุที่เหลืออยู่ได้อย่างแม่นยำ 2.2 วิธีการวัด Ambar ที่แท้จริงเป็นวิธีที่ใช้กันทั่วไปในการประมาณ SOC โดยมีสูตรการคำนวณดังนี้: (1) โดยที่ SOC0 คือเวลาเริ่มชาร์จและปล่อยประจุ CN คือความจุที่ได้รับการจัดอันดับ η คือประสิทธิภาพในการชาร์จและปล่อยประจุ และไม่ใช่ค่าคงที่ (ถือว่าทิศทางของกระแสชาร์จเป็นบวก ทิศทางของกระแสปล่อยประจุเป็นลบ) และ SOC คือสถานะการชาร์จของเวลาปัจจุบัน
ความปลอดภัยของแบตเตอรี่ ความปลอดภัยของแบตเตอรี่คือกล่องดำที่ถือว่ามีความสัมพันธ์ที่เป็นสัดส่วนกับปริมาณไฟฟ้าของแบตเตอรี่ที่ไหลออกจากแบตเตอรี่ โดยไม่คำนึงถึงโครงสร้างและคุณลักษณะไฟฟ้าภายนอกของแบตเตอรี่ ดังนั้น วิธีนี้จึงเหมาะกับแบตเตอรี่ต่างๆ ดังที่เห็นได้จากสมการเดียวกัน (1) ปัญหาที่มีอยู่ในแอปพลิเคชัน: (1) ต้องมีการสอบเทียบค่าเริ่มต้นของ SOC; (2) ต้องมีการคำนวณประสิทธิภาพการชาร์จและการปล่อยประจุที่แม่นยำ; (3) เพื่อวัดกระแสอย่างแม่นยำ การวัดกระแส ตามข้อผิดพลาดในการคำนวณ SOC มีข้อผิดพลาดสะสมของการบูรณาการกระแส; (4) มีขนาดใหญ่ในกรณีที่มีสถานะอุณหภูมิสูงและความผันผวนของกระแส ดังนั้น เมื่อมีการใช้งานด้านอวกาศในการใช้งานจริง โดยทั่วไปจะมีการชดเชยปัจจัยต่างๆ เช่น อัตราการชาร์จและการคายประจุ อุณหภูมิ อายุของแบตเตอรี่ และอัตราการคายประจุเอง ตามสภาพแวดล้อมและเงื่อนไขการใช้งาน
เอกสาร [6] ใช้ความปลอดภัยของ AC สมการ Peukert การแก้ไขอุณหภูมิ และ SOH ร่วมกับ SOH และ SOC ของแบตเตอรี่ตะกั่วกรดควบคุมด้วยวาล์วเตรียมด้านหลังแบบคงที่ ซึ่งประมาณว่าจะอยู่ระหว่างสองสถานะของความจุแบตเตอรี่ตั้งแต่ศูนย์ถึงความจุของหนึ่งรอบ ในรอบนี้ แบตเตอรี่วัดจะคำนวณ SOH เพื่อคำนวณความจุรวมของการคายประจุกระแสมาตรฐานหรือการชาร์จที่อุณหภูมิมาตรฐาน ความแม่นยำในการคำนวณ SOC สามารถเข้าถึง 0 ได้
1% และมีสูตรการคำนวณดังนี้: เอกสาร [7] พิจารณาการชดเชยอัตราการชาร์จและการคายประจุของแบตเตอรี่ อุณหภูมิ อายุของแบตเตอรี่ และอัตราการคายประจุเอง และแก้ไขข้อผิดพลาดที่สะสมผ่านการปรับแต่งเอง และใช้การทดลองจำนวนมาก ค่าแรงดันแบตเตอรี่เดี่ยวที่ได้และค่าสัมประสิทธิ์ความสัมพันธ์ของความจุ ช่วยแก้ไขความไม่สม่ำเสมอของแบตเตอรี่ และแก้ไขสูตร (4) โดยที่: ks คือค่าสัมประสิทธิ์ความสัมพันธ์ และ ΔU คือความแตกต่างระหว่างแรงดันไฟฟ้าที่แรงดันไฟฟ้าต่ำในชุดแบตเตอรี่และแรงดันไฟฟ้าเฉลี่ยของแบตเตอรี่โมโนเมอร์ทั้งหมด: เอกสาร [8] โดยใช้วิธีแรงดันไฟฟ้าวงจรเปิดเพื่อให้ได้ SOC เริ่มต้น หลังจากวิธีการเวลาที่ปลอดภัย การชดเชยต่างๆ ความแม่นยำในการประมาณ SOC อยู่ภายใน 6%
นอกจากนี้ กฎหมายความปลอดภัยมักใช้ร่วมกับ Kalmann (การอภิปรายโดยละเอียดเกี่ยวกับการกรอง Kalman) 2.3 วิธีความหนาแน่น วิธีความหนาแน่นส่วนใหญ่ใช้ในแบตเตอรี่ตะกั่ว-กรด
เนื่องจากความหนาแน่นของอิเล็กโทรไลต์จะค่อยๆ เพิ่มขึ้นในระหว่างการชาร์จ และลดลงเรื่อยๆ ในระหว่างการปล่อยประจุ และความจุและความหนาแน่นของแบตเตอรี่มีความสัมพันธ์เชิงเส้นตรงบางอย่าง ดังนั้นจึงสามารถคาดการณ์ขนาดของ SOC ได้โดยการวัดความหนาแน่นของอิเล็กโทรไลต์ [9] เนื่องจากจำเป็นต้องวัดวิธีการวัดความหนาแน่น จึงใช้ในแบตเตอรี่ตะกั่วกรดชนิดเปิดเป็นหลัก หากสามารถพัฒนาเซนเซอร์ที่มีความแม่นยำ-ความจุความหนาแน่นสูงได้ ก็สามารถฝังไว้ในแบตเตอรี่แบบปิดผนึกได้เมื่อมีการผลิต
เอกสาร [10] [11] [12] ใช้เซ็นเซอร์อัลตราโซนิก รังสีแกมมาพลังงานต่ำ เซ็นเซอร์ความจุแบตเตอรี่ตะกั่ว-กรดเพื่อวัดความหนาแน่นของอิเล็กโทรไลต์แบตเตอรี่ตะกั่ว-กรด ในขณะที่เอกสาร [11] ทำนายความหนาแน่นโดยใช้เครือข่ายประสาทเทียมแบบฟัซซี ดี แต่ไม่สามารถระบุได้ระหว่างอิเล็กโทรไลต์และ SOC 2.
4 กฎแรงดันไฟฟ้าเปิด แรงดันไฟฟ้าเปิด (OpenCIRCUITVOLTAGE) หมายถึงแรงดันไฟฟ้าปลายในสถานะเปิด ซึ่งใกล้เคียงกับแรงเคลื่อนไฟฟ้าของแบตเตอรี่บนค่า วิธีแรงดันไฟฟ้าวงจรเปิดจะได้รับการสร้างขึ้นตามความจุที่เหลือของแบตเตอรี่และแรงดันไฟฟ้าเปิดจะมีความสัมพันธ์เชิงเส้น (ตามสัดส่วน) บางอย่างและขนาดของความจุที่เหลือสามารถรับได้โดยตรงโดยการวัดแรงดันไฟฟ้าวงจรเปิด ข้อดีคือไม่ต้องพึ่งขนาดแบตเตอรี่ ขนาด และความเร็วในการปล่อยประจุ มีเพียงวงจรเปิดเท่านั้นที่เป็นพารามิเตอร์การทดสอบ ซึ่งค่อนข้างเรียบง่าย [13] [14] [15]
เอกสาร [16] อธิบายความสัมพันธ์ระหว่างแรงดันไฟฟ้าวงจรเปิดของแบตเตอรี่ตะกั่ว-กรด ความจุที่เหลือ และความหนาแน่นของอิเล็กโทรไลต์ และให้สูตรการคำนวณระหว่าง SOC และวงจรเปิด โดยที่ VBO คือแรงดันไฟฟ้าวงจรเปิดของแบตเตอรี่ และ Vα ถูกเติมด้วยไฟฟ้า แรงดันไฟวงจรเปิด Vb คือแรงดันไฟวงจรเปิดเมื่อมีการคายประจุที่เพียงพอ และขนาดจะสอดคล้องกับผู้ผลิตแบตเตอรี่ที่แตกต่างกัน เมื่อใช้วิธีนี้ โดยการวัดแรงดันไฟฟ้าวงจรเปิดของแบตเตอรี่ ตารางตรวจสอบทั่วไปสามารถรับค่า SOC โดยประมาณได้
อย่างไรก็ตาม วิธีแรงดันไฟฟ้าวงจรเปิดก็มีข้อเสียที่สำคัญเช่นกัน: (1) ต้องปล่อยให้แบตเตอรี่ถึงสถานะคงที่ และวิธีการกำหนดเวลาคงที่; (2) เมื่อแบตเตอรี่มีอายุมากขึ้น ไฟฟ้าที่เหลือจะลดลง แรงดันไฟฟ้าวงจรเปิดจะเปลี่ยนแปลง ไม่ชัดเจน ไม่มีการคาดการณ์ไฟฟ้าที่เหลืออยู่ได้อย่างแม่นยำ; (3) สำหรับชุดแบตเตอรี่แบบดั้งเดิมที่ใช้ แบตเตอรี่จะอยู่ในสถานะหนึ่ง และไม่สามารถวัดแรงดันไฟฟ้าวงจรเปิดได้ และไม่สามารถทำการวัดออนไลน์ได้ จากวรรณกรรมปัจจุบันโดยทั่วไปจะไม่ใช้เพียงอย่างเดียวโดยใช้วิธีแรงดันไฟฟ้าวงจรเปิด เนื่องจากวิธีการวัดแรงดันไฟวงจรเปิดนั้นดีในระยะเริ่มต้นของการชาร์จ การประมาณค่า SOC จึงมีคุณภาพดี โดยมักจะรวมเข้ากับระบบความปลอดภัยที่เรียกว่า Karmana
สำหรับการหยุดใช้งานแบตเตอรี่เป็นเวลานาน วรรณกรรม [14] ใช้แบตเตอรี่ของเส้นโค้งการฟื้นตัวของวงจรเปิดในสถานะต่างๆ และสูตรการทำนายแรงดันไฟฟ้าวงจรเปิดจะได้รับจากการคำนวณ SOC ค่าที่ทำนายไว้ และการวัด ข้อผิดพลาดสัมพันธ์อยู่ภายใน 6% เอกสาร [17] [18] [19] ทำให้เส้นโค้งการคายประจุของแบตเตอรี่ VRLA เป็นปกติที่อัตราการคายประจุที่แตกต่างกัน พบว่าเส้นโค้งการคายประจุมีความสม่ำเสมอที่ดี โหมดการคายประจุ อัตราส่วนการคายประจุ อุณหภูมิแวดล้อม และแรงดันไฟการคายประจุ ฯลฯ
การเปลี่ยนแปลงของปัจจัยมีน้อยมากต่อความสอดคล้องกันนี้ มีการเสนอให้มีเพียงแรงดันการคายประจุเท่านั้นที่ทำนาย SOC โดยมีสูตรการคำนวณดังต่อไปนี้: โดยที่ TT คือระยะเวลาการคายประจุทั้งหมด และ VEND คือแรงดันสิ้นสุดการคายประจุ VP คือแรงดันเริ่มต้นการคายประจุ ในทุกเวลา เมื่อทราบแรงดันคายประจุ V (T) ของแบตเตอรี่ สามารถคำนวณ Vu (TU) ได้ และค่า Tu ที่เป็นมาตรฐานจะได้จากเส้นโค้งที่เป็นมาตรฐาน ซึ่งจะมีสถานะการชาร์จ (ความแม่นยำในการประมาณอยู่ภายใน 10% " เหมาะสำหรับสถานการณ์ที่ต้องการความต้องการต่ำ)
เอกสาร [20] [21] ใช้แรงดันไฟคายประจุเริ่มต้นที่แตกต่างกันเพื่อให้สอดคล้องกับเวลาคายประจุที่แตกต่างกัน โดยการไหลโหลดจากภายนอกเป็นระยะๆ ในระหว่างการทำงาน วัดแรงดันไฟในการทำงานชุดหนึ่ง กำหนดแรงดันไฟ อุณหภูมิเป็นอินพุต เวลาที่เหลือคือเอาท์พุตของระบบประมาณค่า SOC แบบเบลอ จึงได้ SOC ของแบตเตอรี่กำลังโมโนเมอร์ ซึ่งอยู่ภายใน 1% ซึ่งเรียกอีกอย่างว่าวิธีแรงดันไฟโหลด วิธีนี้สามารถประมาณค่า SOC ของแบตเตอรี่แบบออนไลน์ ซึ่งมีผลดีในการปล่อยกระแสไฟคงที่ แต่จะไม่สามารถใช้กับสภาวะการปล่อยที่มีความผันผวนอย่างมากหรือรุนแรงได้ 2.
วิธีการวัดความต้านทานภายใน (การนำไฟฟ้า) 5 ประการของความต้านทานของแบตเตอรี่ในแบตเตอรี่ ความต้านทานภายในที่ต้องการ ความต้านทาน และมีความสัมพันธ์ใกล้ชิดกับ SOC เพื่อนำไปใช้ในการวัดแบบออนไลน์ หากแบตเตอรี่เป็นแบตเตอรี่ที่แตกต่างกัน ค่าความต้านทานภายในก็จะแตกต่างกัน วิธีการความต้านทานภายใน (แนวทางไฟฟ้า) คือการทำนายการเปลี่ยนแปลงของ SOC โดยการวัดการเปลี่ยนแปลงของความต้านทานภายใน (การนำไฟฟ้า) ในระหว่างกระบวนการคายประจุ [ยี่สิบสอง]
ยังมีข้อถกเถียงกันเกี่ยวกับการประยุกต์ใช้การทำนายความต้านทานภายใน SOC เอกสาร [23] การทดสอบและสถิติเกี่ยวกับการนำไฟฟ้าของแบตเตอรี่ตะกั่วกรดปิดผนึกควบคุมด้วยวาล์วโดยใช้เครื่องทดสอบการนำไฟฟ้า พบว่าเวลาในการคายประจุสัมพันธ์เชิงเส้นกับค่าการนำไฟฟ้า และค่าสัมประสิทธิ์สหสัมพันธ์ถึง 0.825 ในมาตรฐาน IEEE 1188-1996 ยังมีการเสนอการวัดอีกด้วย
ความจำเป็นของความต้านทานภายใน โดยต้องกำหนดการทดสอบความต้านทานภายในแบตเตอรี่ให้ชัดเจนอย่างน้อยไตรมาสละครั้ง [24] แต่จากเอกสารทางวิชาการ [25] [26] [27] [28] ความสัมพันธ์ระหว่างความต้านทานภายใน (การนำไฟฟ้า) และความจุที่เหลือของแบตเตอรี่นั้นได้รับการศึกษาโดยการทดสอบเชิงทดลองและการวิเคราะห์เชิงทฤษฎีตามลำดับ และผลลัพธ์แสดงให้เห็นว่า: (1) สายควบคุมวาล์ว เมื่อ SOC ของแบตเตอรี่อยู่ที่ 50% หรือ 40% ความต้านทานภายใน (หรือการนำไฟฟ้าอิเล็กตรอน) โดยพื้นฐานแล้วจะไม่มีการเปลี่ยนแปลง เพียง SOC น้อยกว่า 40% เท่านั้น ความต้านทานภายในของแบตเตอรี่จะเพิ่มขึ้นอย่างรวดเร็ว; (2) สำหรับความจุมากกว่า 80% แบตเตอรี่ VRLA จะถูกใช้งานออนไลน์ และไม่สามารถตรวจพบ SOC ของแบตเตอรี่ได้ตามค่าความต้านทานภายใน (การนำไฟฟ้า); (3) ตามค่าอิเล็กโทรไดด์ของแบตเตอรี่หรือค่าความต้านทานภายใน สามารถกำหนดประสิทธิภาพของแบตเตอรี่ได้ในระดับหนึ่ง การเกิดขึ้นของข้อพิพาทมีความเกี่ยวข้องกับวิธีการทางสถิติ โดยส่วนใหญ่เกี่ยวข้องกับความแม่นยำของแบตเตอรี่ที่ทดสอบและเครื่องทดสอบความต้านทานภายใน (การนำไฟฟ้า)
เนื่องจากแม้จะเป็นผู้ผลิตรายเดียวกัน ผลิตชุดเดียวกัน ขนาดแบตเตอรี่เท่ากัน แต่ความต้านทานภายใน (การนำไฟฟ้า) ก็ไม่มีความสม่ำเสมอ ดังนั้นจึงขึ้นอยู่กับระดับเทคนิคของผู้ผลิตแบตเตอรี่ และความต้านทานภายในของแบตเตอรี่มีขนาดเล็ก และ SOC มีการเปลี่ยนแปลง การเปลี่ยนแปลงความต้านทานภายในไม่ใหญ่ และหากความแม่นยำของเครื่องมือวัดไม่เป็นไปตามข้อกำหนด ก็จะเป็นการยากที่จะสอดคล้องกับความสัมพันธ์ที่สอดคล้องกันระหว่างความต้านทานภายในและความจุที่เหลือ เอกสาร [29] จากการวัดสเปกตรัมอิมพีแดนซ์ พบว่าการเปลี่ยนแปลงของความต้านทานอะคูสติกโอห์มสามารถสะท้อนการเปลี่ยนแปลงของ SOC ได้ แต่เมื่อ SOC เพิ่มขึ้นจาก 16% เป็น 91% ความต้านทานภายในโอห์มิกจะมีค่าเล็กน้อย ประมาณ 0.
6 มิลลิโอห์ม และได้เสนอว่าเมื่อค่าอิมพีแดนซ์ภายในของแบตเตอรี่เปลี่ยนแปลงไปตามความรู้สึก จะมีความสัมพันธ์ของฟังก์ชันโมโนโทนิกระหว่างสัญญาณเร้าที่สอดคล้องกันและ SOC และช่วงการเปลี่ยนแปลงความถี่จะมีขนาดใหญ่ และความถี่เรโซแนนซ์ของแบตเตอรี่ VRLA จะถูกใช้เป็นการส่งสัญญาณของ SOC ของแบตเตอรี่ พารามิเตอร์เบื้องต้น ทฤษฎีนี้ยังอยู่ในขั้นการวิจัย
ในเวลาเดียวกัน วรรณกรรม [30] เสนอให้กำหนดมาตรฐานผู้ผลิตโดยการเลือกแบตเตอรี่ที่เสถียรด้วยความต้านทานภายใน (การนำไฟฟ้า) โดยเลือกแบตเตอรี่ที่เสถียรด้วยความต้านทานภายใน (การนำไฟฟ้า) ในกรณีที่ใช้แบตเตอรี่ในปริมาณมาก การผลิตมากกว่าตัวบ่งชี้ที่แม่นยำโดยตรงเป็นสถานะการชาร์จแบตเตอรี่ จากวรรณกรรม ข้อมูล และผลิตภัณฑ์ทดสอบความต้านทานภายใน (การนำไฟฟ้า) ในปัจจุบัน [31] [32] [33] [34] ส่วนใหญ่ใช้กับวิธีการต้านทานภายใน (การนำไฟฟ้า) เพื่อเตือนความล้มเหลวของแบตเตอรี่ ใช้กับการคาดการณ์ SOC โดยตรงน้อยมาก (โดยทั่วไปใช้เป็นหนึ่งในปัจจัยที่มีอิทธิพลต่อ SOC) รวมกับวิธีการแรงดันไฟฟ้า เครือข่ายประสาท ฯลฯ
) [36]. และวรรณกรรม [30] ได้สรุปไว้อย่างแน่ชัดว่า เมื่อค่าการนำไฟฟ้าของแบตเตอรี่โมโนเมอร์มากกว่า 80% ของค่าอ้างอิง แบตเตอรี่นั้นก็ถือว่าปกติ และความจุอยู่ที่ 80% หรือมากกว่า เมื่อค่าการนำไฟฟ้าอยู่ที่ 60% -80% ของค่าอ้างอิง ความจุมีแนวโน้มว่าจะต่ำกว่า 80% แบตเตอรี่อยู่ในสถานะ "อันตรายปกติ" และจำเป็นต้องทดสอบการคายประจุจนเต็ม เมื่อค่าการนำไฟฟ้าอยู่ที่ 60% ของค่าอ้างอิง แบตเตอรี่จะอยู่ในสถานะ "เสี่ยงร้ายแรง" ซึ่งต้องเปลี่ยนทันที
3 วิธีการทำนายแบบจำลองการระบุระบบและประมาณค่าพารามิเตอร์ SOC 2000 วิธีการจำลองการระบุระบบและประมาณค่าพารามิเตอร์เริ่มมีการนำมาใช้ในการประมาณ SOC ของแบตเตอรี่ และปัจจุบันเป็นที่นิยมมากขึ้นในงานวิจัยในประเทศและต่างประเทศ ส่วนใหญ่จะเป็นการประยุกต์ใช้วิธีการใหม่ๆ บางอย่าง (ส่วนใหญ่เป็นอัลกอริทึมปัญญาประดิษฐ์แบบแมนนวล) เพื่อจำลองระบบ ซึ่งจะส่งผลต่อปัจจัยต่างๆ ของ SOC ในแบบจำลองแบตเตอรี่ และแบบจำลองจะถูกระบุและประมาณค่าพารามิเตอร์อย่างเป็นระบบด้วยการทดสอบจำนวนมาก จากนั้นจะได้ความสัมพันธ์ระหว่างพารามิเตอร์บางตัวกับ SOC ของแบตเตอรี่ จากนั้นจึงประมาณค่า SOC กฎของเครือข่ายประสาทเทียมที่เปรียบเทียบได้ เครื่องเวกเตอร์ วิธีการให้เหตุผลแบบฟัซซี และวิธีการกรองคาลมาน ฯลฯ
3.1 วิธีการเครือข่ายประสาท เนื่องจากแบตเตอรี่เป็นระบบที่ไม่เป็นเชิงเส้นที่ซับซ้อน จึงยากที่จะสร้างแบบจำลองทางคณิตศาสตร์ที่แม่นยำสำหรับกระบวนการชาร์จและการคายประจุ เครือข่ายประสาทมีการรักษาแบบกระจายขนาน การทำแผนที่แบบไม่เชิงเส้น และการเรียนรู้แบบปรับตัว เป็นต้น
ซึ่งสามารถสะท้อนลักษณะพื้นฐานของความไม่เชิงเส้นได้ดีขึ้น และสามารถให้เอาต์พุตที่สอดคล้องกันเมื่อมีการกระตุ้นภายนอก ทำให้สามารถจำลองไดนามิกของแบตเตอรี่ได้ในระดับหนึ่ง คุณสมบัติ การประมาณค่า SOC [36] [37] การประมาณค่า SOC ของแบตเตอรี่ส่วนใหญ่ใช้เครือข่ายประสาทเทียม 3 ชั้นทั่วไป [38] [39] โดยทั่วไปจะรวบรวมกระแสการคายประจุ แรงดันไฟฟ้าปลายทาง และอุณหภูมิของแบตเตอรี่โดยตรง หรือใช้การเปลี่ยนแปลงของวิธีการวัดแบบผสมผสานของกระแสแปรผัน กำหนดค่าอินพุตของการเคลื่อนที่ไฟฟ้าและความต้านทานภายในเป็นแบบจำลองเครือข่ายประสาท SOC เป็นเอาต์พุต
ในกรณีที่ชั้นอินพุตและเอาต์พุตเป็นฟังก์ชันเชิงเส้นโดยทั่วไป จำนวนโหนดชั้นโดยนัยจะขึ้นอยู่กับความซับซ้อนและความแม่นยำในการวิเคราะห์ของปัญหา และสามารถกำหนดได้ตามความเร็วของการบรรจบกันและการฝึกอบรมที่เสร็จสมบูรณ์ของเครือข่าย วิธีการเครือข่ายประสาทเทียมเหมาะสำหรับแบตเตอรี่ต่างๆ แต่ข้อผิดพลาดได้รับผลกระทบจากข้อมูลการฝึกอบรมและวิธีการฝึกอบรม และยังมีสัญญาณรบกวนที่ส่งผลต่อการเรียนรู้เครือข่ายและการใช้งานจริง จากวรรณกรรมปัจจุบัน เครือข่ายประสาทเป็นเพียงเชิงทฤษฎีเป็นหลัก
เอกสาร [40] [41] มีการใช้วิธีการ Neural Network-Support Vector Machine (SVM) อีกวิธีหนึ่งสำหรับการประมาณ SOC ของแบตเตอรี่เพื่อหลีกเลี่ยงข้อบกพร่องในเวลาการฝึกอบรม ความเหมาะสมในพื้นที่ และความเร็วในการบรรจบกัน และวรรณกรรม [42] เสนอเพิ่มเติมเพื่อทำนาย SOC ของแบตเตอรี่โดยใช้เครื่องเวกเตอร์ที่เกี่ยวข้อง (RVM) ซึ่งสูงกว่าเครื่องเวกเตอร์สนับสนุน และแบบจำลองการทำนายยังเบาบางกว่า แต่อัลกอริทึมมีความซับซ้อนมากกว่า และจำเป็นต้องใช้ทรัพยากรคอมพิวเตอร์ที่ใหญ่กว่า 3.
กฎตรรกะแฟล็กฟัซซี 2 คือการสร้างแบบจำลองฟัซซีของแบตเตอรี่ ซึ่งมีพื้นฐานอยู่บนข้อมูลทดสอบอินพุตและเอาท์พุต และไม่ถูกจำกัดด้วยความรู้ ประสบการณ์ และพฤติกรรมก่อนหน้า โดยทั่วไปวิธีนี้จะประมวลผลพารามิเตอร์ (เช่น แรงดันไฟฟ้า กระแสไฟฟ้า อุณหภูมิ ความต้านทานภายใน ฯลฯ) เป็นตัวแปรอินพุตของแบบจำลอง (เช่น
เช่น แรงดันไฟฟ้า ตามข้อมูลการทดสอบคุณลักษณะของแบตเตอรี่จำนวนมาก ความสัมพันธ์ระหว่าง SOC กับกระแสไฟฟ้า แรงดันไฟฟ้า อุณหภูมิ และปัจจัยอื่นๆ ออกแบบกฎฟัซซีและสร้างการให้เหตุผลแบบฟัซซี โดยใช้การประมาณค่าการรักษาที่ไม่ชัดเจนของ SOC ของแบตเตอรี่ [43] [44] [45] ข้อเสียเปรียบหลักของวิธีลอจิกแบบฟัซซีคือ ต้องใช้ข้อมูลการทดลองจำนวนมากในการหากฎการใช้เหตุผลแบบฟัซซีและสูตรประสบการณ์ตามข้อมูลการทดลอง
วิธีการนี้ใช้ในการจำลองและการวิเคราะห์เชิงทฤษฎีในปัจจุบัน แต่ยังไม่ได้นำมาใช้จริง 3.3 การกรองคาลมาน แนวคิดหลักของทฤษฎีการกรองคาร์มานคือการประมาณขนาดของระบบพลังงานที่เหมาะสมที่สุด ซึ่งใช้ได้กับทั้งระบบเชิงเส้นและระบบไม่เชิงเส้น [46]
เมื่อใช้การกรอง Kalman เพื่อประมาณค่า SOC จะต้องสร้างแบบจำลองแบตเตอรี่ที่เหมาะสมสำหรับการประมาณค่าตัวกรอง Kalman ก่อน และแบบจำลองนั้นจะต้องมีคุณสมบัติ 2 ประการ: (1) สามารถสะท้อนลักษณะไดนามิกของแบตเตอรี่ได้ดีขึ้น ในขณะที่ลำดับไม่สามารถสูงเกินไปได้ เพื่อลดปริมาณการทำงานของโปรเซสเซอร์ จึงสามารถนำไปใช้ได้อย่างง่ายดาย (2) แบบจำลองจะต้องสะท้อนความสัมพันธ์ระหว่างแรงเคลื่อนไฟฟ้าของแบตเตอรี่และแรงดันไฟฟ้าที่ขั้วได้อย่างแม่นยำ จึงทำให้สามารถประมาณค่าวงปิดได้อย่างแม่นยำสูง แบบจำลองวงจรเทียบเท่าที่ใช้กันทั่วไป ได้แก่ แบบจำลอง Randle (ดูรูปที่ 1) แบบจำลอง Massimoceraolo แบบจำลอง Thevenin แบบจำลอง Shepherd เป็นต้น
พารามิเตอร์ทั้งหมดเป็นพารามิเตอร์ที่รอการพิจารณา จำเป็นต้องคำนวณตามข้อมูลการทดลอง [47] [48] รูปที่ 1 แบบจำลองแบตเตอรี่ Randles ในการใช้งานจริง มักใช้วิธีการกรอง Kalman ร่วมกับกฎแรงดันไฟฟ้าวงจรเปิดและความปลอดภัย ขั้นตอนพื้นฐานมีดังนี้: เมื่อใช้แรงดันไฟฟ้าบนแบบจำลองเป็นระบบ หลังจากประมาณแรงดันไฟฟ้าโดย Kalman แล้ว จะใช้แรงดันไฟฟ้าเพื่อรับแรงเคลื่อนไฟฟ้าของแบตเตอรี่ (หรือแรงดันไฟฟ้าเปิด) โดยใช้ความสัมพันธ์ทางคณิตศาสตร์ในแบบจำลอง และสุดท้ายคือความสัมพันธ์ระหว่างแรงเคลื่อนไฟฟ้าและ SOC
SOC. รูปแบบคณิตศาสตร์ของ Calman สำหรับแบบจำลองแบตเตอรี่คือ: สมการสถานะ: (9) สมการการสังเกต: (10) สมการ สมการ: (11) เวกเตอร์อินพุต UK มักจะรวมตัวแปรต่างๆ เช่น กระแสแบตเตอรี่ อุณหภูมิ ความจุที่เหลือ และความต้านทานภายใน เอาต์พุต YK ของระบบโดยปกติจะเป็นแรงดันไฟฟ้าในการทำงานของแบตเตอรี่ และ SOC ของแบตเตอรี่จะรวมอยู่ในปริมาณสถานะ xk ของระบบ และ AK, BK จะถูกกำหนดโดยพารามิเตอร์ที่ได้จากการทดสอบ ωk, vk คือสัญญาณรบกวนของระบบ แกนหลักของอัลกอริทึม SOC ประมาณการ คือ การสร้างชุดสมการที่เรียกซ้ำซึ่งรวมการประมาณ SOC และการสะท้อนข้อผิดพลาดในการประมาณการ และเมทริกซ์ความแปรปรวนร่วมจะถูกใช้เพื่อให้ช่วงของข้อผิดพลาดในการประมาณการ
สมการ (11) คือสมการสถานะของโมเดลแบตเตอรี่ซึ่งอธิบายพื้นฐานของ SOC เป็นเวกเตอร์สถานะ ตัวกรอง Kalman สามารถรักษาความแม่นยำที่ดีในระหว่างกระบวนการประมาณค่า และมีผลการแก้ไขข้อผิดพลาดในการเริ่มต้นที่แข็งแกร่ง ซึ่งมีผลยับยั้งที่แข็งแกร่งต่อสัญญาณรบกวน ปัจจุบันการคาดการณ์ SOC ของแบตเตอรี่รถยนต์ไฮบริดซึ่งส่วนใหญ่ใช้ในการเปลี่ยนแปลงกระแสไฟฟ้า
บนพื้นฐานของตัวกรอง Kalman วรรณกรรม [49] [50] [51] จะขยายวิธีการกรอง Karman และ Colorborne Karman เพื่อประมาณ SOC ข้อเสียที่ใหญ่ที่สุดของวิธีการกรอง Kalman ก็คือความแม่นยำที่ประเมินได้นั้นขึ้นอยู่กับความแม่นยำของแบบจำลองวงจรเทียบเท่าแบตเตอรี่ และการสร้างแบบจำลองแบตเตอรี่ที่แม่นยำถือเป็นกุญแจสำคัญของอัลกอริทึม ข้อเสียอีกประการหนึ่งคือการทำงานค่อนข้างใหญ่ ต้องเลือกรุ่นแบตเตอรี่ที่เรียบง่ายและเหมาะสม และโปรเซสเซอร์ที่เร็วกว่า
3.4 เอกสารวิธีอื่น [52] วิธีแบบจำลองเชิงเส้นที่กล่าวถึง โดยใช้แบบจำลองเชิงเส้นบนเงื่อนไขเริ่มต้นของข้อผิดพลาดในการวัดและข้อผิดพลาด โดยอิงจากการทดลองการคายประจุแบตเตอรี่จำนวนมาก โดยกำหนด SOC และการเปลี่ยนแบตเตอรี่ สมการเชิงเส้นของแรงดันไฟฟ้าปลาย กระแสไฟฟ้า ในสูตร (12) และ (13) วิธีนี้เหมาะสำหรับกระแสไฟฟ้าขนาดเล็ก SOC เปลี่ยนแปลงช้า แต่คุณลักษณะนี้จำกัดขอบเขตการใช้งาน และยังไม่พบเห็นในแอปพลิเคชันจริง
โดยที่ SOC (k) คือค่า SOC ของเวลาปัจจุบัน △ SOC (k) คือค่าการเปลี่ยนแปลงของ SOC V (k) และ i (k) คือ แรงดันไฟและกระแสไฟของเวลาปัจจุบัน Β0, β1, β2 และ β3 คือค่าสัมประสิทธิ์ของแบบจำลองเชิงเส้นที่ได้จากการใช้ข้อมูลอ้างอิงผ่านวิธีการกำลังสองน้อยที่สุด เอกสาร [53] เสนอว่าแบบจำลองค่าเฉลี่ยเลื่อนกลับแบบไม่เชิงเส้น (Narmax) มีค่าสูง โครงสร้างเรียบง่าย ความเร็วในการบรรจบกันถูกกำหนดลักษณะ และปัจจัยที่มีอิทธิพลอื่นๆ ของแรงดันและกระแสไฟฟ้าในการทำงานของแบตเตอรี่เป็นอินพุตของแบบจำลอง และ SOC ถูกใช้เป็นสัญญาณรบกวนของระบบ และ SOC ของแบตเตอรี่จะทำการประมาณแบบเรียลไทม์ ข้อผิดพลาดสัมพัทธ์อยู่ที่เพียง 1% และต้องมีการศึกษาการประยุกต์ใช้วิธีนี้เพิ่มเติม
มันรู้จักโมเดล (14) โดยที่ Y (t) คือลำดับ SOC, U1 (T) คือลำดับกระแสไฟฟ้า, U2 (T) คือลำดับแรงดันไฟฟ้า เอกสาร [54] สำหรับความสัมพันธ์ที่ไม่เป็นเชิงเส้นระหว่างความต้านทานภายในของแบตเตอรี่และความจุที่เหลือ SOC ของหน่วยแบตเตอรี่รถยนต์พลังงานผสมได้รับการคาดการณ์โดยวิธีกลุ่มจำลอง GM สีเทาผสม (1, 1) วรรณกรรม [55] กำหนดสมการสถานะ SOC ตามเวลาที่ปลอดภัย และเสนอการประยุกต์ใช้อัลกอริทึมการกรองที่แข็งแกร่งเพื่อคาดการณ์ SOC ของแบตเตอรี่
จะเห็นได้จากวิธีการต่างๆ ที่ได้กล่าวมาข้างต้น ไม่ว่าจะเป็นวิธีการสร้างแบบจำลองทางกายภาพหรือวิธีการสร้างแบบจำลองการระบุระบบและประมาณพารามิเตอร์ก็ตาม จะขึ้นอยู่กับพารามิเตอร์ที่วัดได้ของแบตเตอรี่ (โดยหลักแล้วคือ แรงดันไฟฟ้า กระแสไฟ ความต้านทานภายใน อุณหภูมิ เป็นต้น) และส่วนที่เหลือ
ความสัมพันธ์ระหว่างความจุขึ้นอยู่กับการทดลองจำนวนมากเพื่อสร้างแบบจำลองระบบแบตเตอรี่ที่เสถียรเพื่อคาดการณ์ SOC 4 สรุป วิธีการทำนาย SOC ได้รับผลกระทบจากหลายปัจจัย (กระแสการคายประจุ แรงดันไฟฟ้า อุณหภูมิ ความลึกในการคายประจุ ความต้านทานภายใน ความหนาแน่นของอิเล็กโทรไลต์ การคายประจุเอง การเสื่อมสภาพ ฯลฯ) เทคโนโลยีการทำนายความจุที่เหลือของแบตเตอรี่ VRLA และการสร้าง แบบจำลองมีความซับซ้อน และไม่มีวิธีการทำนายที่แน่นอนและเป็นสากล
วิธีการทำนาย SOC ต่างๆ ที่กล่าวมาข้างต้นล้วนมีข้อดี แต่ในสภาพแวดล้อมการใช้งานที่แตกต่างกัน และมีความแม่นยำในการทำนายที่แตกต่างกัน การใช้เพียงวิธีการทำนายเดียวไม่สามารถตอบสนองความต้องการที่แท้จริงได้อีกต่อไป จึงจำเป็นต้องออกแบบวงจรตรวจจับข้อมูลที่มีความแม่นยำสูง โดยใช้หลายวิธีในการทำนาย SOC ร่วมกัน โดยเฉพาะอย่างยิ่งการผสมผสานระหว่างอัลกอริทึมอัจฉริยะต่างๆ และทฤษฎีใหม่ๆ ทำให้ SOC เป็นการทำนายที่แม่นยำแบบเรียลไทม์ ออนไลน์ และกลายมาเป็นแนวทางการพัฒนาในการทำนายความจุที่เหลือของแบตเตอรี่